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ABSTRACT 

Every compact group is Baire isomorphic to a product of compact met- 

ric spaces; the isomorphism takes the Haar measure on the group to a 

direct product measure. This topological connection between compact 

groups and products of compact metric spaces provides a unified treatment 

for (Baire) measures on compact groups and for measures on topological 

products of metric spaces. 

1. In t roduc t ion  and review of te rminology 

There are several articles on the realization of a-homomorphisms by point maps 

and the pertinent bibliography has been cited in [10]. As basic papers we consider 

the classical publication [17] of von Neumann, [14] of Maharam and [1] of Choksi. 

Further studies are contained in Choksi [2], Choksi and Simha [6], Maharam [15] 

and Graf [9]. The study [4] and particularly Fremlin [7] are also noteworthy. 

In 1979 Choksi and Fremlin developed a theory [5] which was designed to 

study how many, i.e. non-isomorphic, completion regular measures can exist on 

a product of compact metric spaces. The results of [5] not involving additional 

set-theoretic assumptions remain valid for arbitrary compact groups [10]. 

The present paper again returns to the topic of measurable transformations 

on topological groups and proves that every compact group is Baire isomorphic 

to some product of compact metric spaces of the same topological weight (for 
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the precise statement see Theorem 2.3). Our method is, essentially, a slight 

refinement of that  used in [10]. Various extensions and refinements (with short 

proofs) of known theorems in topological measure theory are deduced. The results 

obtained complement the discussion presented in [10] and yield a theory for Baire 

measures on compact groups which is, in a certain sense, a complete analogue of 

that  for Baire measures on products of compact metric spaces. 

All measure spaces (Z, ~, ~), simply denoted by (Z, A), are assumed to be finite. 

The completion of ~ with respect to A is denoted by ~x. 

Let (Z~, B~, hl), i = 1, 2 be measure spaces. A map f : Z1 ~ Z2 is called 

B2 - B1 measurable if . f - lB  E 1~1 for all B E B2. For an arbitrary compact 

iHausdorff) space X, let Bx, respectively B ° ,  denote its Borel respectively Baire 

a-algebra. A Baire measure # on X is called completion regular if every Borel 

set in X is #-measurable. In the case when X = G is a compact group, Ac will 

denote the /normalized) Haar measure on G. Finally, in that case Rc  will be 

the set of closed normal subgroups of G. (The reader is referred to [11], [12] for 

further information about measures on compact groups.) 

Next, let X, Y be the compact spaces and #, v Baire measures on X, re- 

spectively Y. A map g : X -* Y is called Baire (respectively completion Baire) 
- - v  - - / a  

measurable iff it is B ° - B ° (respectively B ° - B ° ) measurable. A (completion) 

Baire measurable bijection g is said to be a (completion) Baire isomorphism iff 

g-1 is also icompletion) Baire measurable. If such a bijection exists, then X and 

Y, respectively (X, p), (Y, v ) ~ ) r  just #, v--are said to be (completion) Baire 

isomorphic. 

2. The Baire isomorphism 

Throughout this paper G is a compact topological group of uncountable weight 

wig  ) = o~. For H E Re, PH will denote the canonical projection from G to 

G/H. We need some auxiliary notation. 

If X is a compact space, i Y, ~, #) any measure space and h a mapping from 

Y to X such that  h - l C  E ~ for every C E B~, then h-i# ) will denote the Baire 

measure on X defined by: h(#)(D) = #(h-lD),  for D E B ° .  

In the sequel, we shall identify a cardinal "y with the initial ordinal of cardinal 

% Also, when no ambiguity arises, we shall identify a Radon measure with its 

restriction to the Baire a-algebra. 
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Before stating our main result, the following lemma concerning Baire cross- 

sections is proven. It is a refinement of lemma 5.6 in [10]. 

LEMMA 2.1: Let H E Re .  If H is Lie, then there exists a Baire set S in 

G such that (a) G = S.H, (b) BHI{~:} N S is a single point set {r(J:)} for all 

E G / H  (where ~ = x.H, x • G), (c) the bijection q : G / H  x H ~ G defined 

by: q(:~, t) = r(~).t is a Baire isomorphism from G / H  x H onto G such that 

q(AG/HxH) ---- &G. 

Proof (included for completeness): By theorem 1 in section 5.4 of [16], there 

exist a compact neighborhood Q1 of ida and a compact F1 C Q1 such that  (i) 

Q1 = F1.H, (ii) pill{J:} N F1 is a single point, for ~: • PHQ1. Let Q2 be an 

open Baire set in G such that Q2 c Q1. Since PH is an open surjection, PHQ2 

is a Baire subset of G / H  (see e.g. [13], lemma 1.6, p. 275). Thus the open set 

Q = pHlPHQ2 = Q2.H must be Baire in G. 

Now if we set F = {x • F1 : pnx  • PHQ2}, then we clearly have Q = F.H 

and the rest of the proof proceeds exactly as that of lemma 5.6 in [10]. | 

Note: Lemma 2.1 was suggested by a technique used by Choksi in [2], Lemma 

6. 

In the sequel, for any family {#i} of Radon probability measures, (~i #i will 

denote, as usual, the radon product measure of the #i. The next statement, which 

is immediate from arguments used in [10], is modelled on that of Furstenberg's 

structure theorem (see e.g. [8]). 

LEMMA 2.2: There exists a family (H 7)7<~ of groups in Ra with NT<~ H7 = 

{ida} such that, for every 7 < a, 

(il) H6 c HT for a > b > % 

(i2) H~/H~+I is Lie and 

(ia) H~ = NZ<~ H~ if  7 is a limit ordeal. 

Proof." There is a directed set F = {Fj, j • J}  of groups in Ra,  with the 

G/Fj  Lie, of cardinal a such that [~jeJ Fj = {ida}IX6]. The family (H.r).r<~ will 

be defined by transfinite induction on 7. Enumerating F as F = {F¢, ~ < a} 

and taking Ho = Fo, we set H 7 = H~ N F 7 if 7 = /5 + 1 for some/5 < a and 

/-/7 = [']6<~ H~ otherwise. 

Then, by construction, the H 7 satisfy the conditions il, i2 and i3. | 
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The following theorem establishes an intimate connection between compact 

groups and products of compact metric spaces. 

THEOREM 2.3: There exist a [amily (# , ) ,<~ of Radon probability measures, 

each tt,  supported on some compact metric space X~ with at least two points and 

a Baire isomorphism qv from XG := 1-L<~ X~ onto G such that ga(~) ,<~  # , )  = 

AG. 

Proof" (It proceeds exactly as that of the first part of corollary 5.11 of [10] 

except that lemma 2.1 replaces lemma 5.7 of [10]; the main steps of the proof are 

given only for completeness.) 

Set Xo := G/H1 and X~ := H.~/H~+I for ~/ > 0. By induction on ~/ < a, 

using arguments involving projective limits of compact spaces, Lemma 2.1 and 

Lemma 2.2, for every ~/< a we find a Baire isomorphism q~ from Y~ = 1-I8<~ X6 

onto G / H  7 such that qE o r(,E = PIle,He o q( for e < ¢ < ~, where PA,B (resp. 

r¢,e) is the canonical projection of G / A  to G / B  (resp. Y( to Y~). [If 7 is a 

successor ordinal, say ~/ = 5 + 1, then Lemma 2.1 yields a Baire isomorphism 

w~ : G/H6 × X6 --* G / H  r. We take q~ = w 7 o (q6 x I x , )  : Y7 ~ G/H.y, where 

q~ x Ix~ denotes the mapping: Y6 × X~ -~ G/H~ × X8 : (x, y) -* (q6(x), y). In the 

case when 7 is a limit ordinal we take q~ to be the unique mapping satisfying: 

q~ o r~,~ = PH.~.Hs o qT, ~ < 3' < ~'] 

Again there is a unique mapping qc : 1-I,<~ X~ --, G (~ proj~ l imG/H~)  such 

that 

(2.4) PH~ o qG = q~ o p~, ~/ < a 

(where p~-denotes the canonical projection from 1-I6<~ X~ onto YI6<7 x~). Then 

qG, as defined, is 1-1 by construction. Since rI~<~ x~  is a cartesian product, it 

is immediate from (2.4) that qG is surjective and in view of (2.4) and Lemma 

2.1, is a Baire isomorphism satisfying the required conditions. This completes 

the proof of the theorem. | 

3. Conseqences of  Theorem 2.3 

Theorem 2.3 makes possible the discussion of results about products of compact 

metric spaces in the setting of topological groups; in particular, combining argu- 

ments due to Choksi [1] with Theorem 2.3, the following alternative and totally 
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different proof of theorem 1 in [2], independent of the deep induction arguments 

used there, is deduced. 

THEOREM 3.1: ([2], Theorem 1) Let # be a finite Baire measure on G. Then 

every automorphism • of the measure algebra ~ of (G, 13 °,  I~) is induced by an 

invertible completion Baire point transformation T of G. 

Proof: By Theorem 2.3, there exist X = XG and q = qc as in Theorem 2.3. 

Consider the Baire measure v = q - l ( # )  on X and the bijection f from ~/~ to the 

measure algebra ~2~ of u defined by: f[A]~ := q-l[A]~, where for a ~-measurable 

set M, [M]~ denotes equivalence modulo (-negligible sets. 

Then clearly, the mapping • = f o (I) o f - 1  is an automorphism of ~2~ which, 

in view of [1], is induced by an invertible completion Blare point t ransformation 

R : X --* X. Then the mapping T = q o R o q - 1  : G --* G has the required 

properties. | 

Similarly, combining theorem 1 of [5] with Theorem 2.3, one easily gets 

THEOREM 3.2: ([10], theorem 4.10) I f  A, # are Radon probability measures on 

G and if there exists a measure preserving isomorphism of the measure algebras 

fl~, ~ of A, respectively #, then A, # are completion Baire isomorphic. 

Concluding remarks 3.3: We conclude this note by recording some more 

measure-theoretic applications of Theorem 2.3. 

1. Let Xc,  qv be as in Theorem 2.3. First we observe that  XG is a compact  

group, because it is the direct sum of the (groups) X~. There is a natural  way 

to associate a Baire measure /~ = qc(v) on G to any Baire measure v on X c  

and we clearly have that  # is homogeneous iff u is homogeneous (of the same 

Maharam type). Moreover, # is the (normalized) Haar measure on G if u is a 

direct product measure on XG. Thus, the Haar  measure on any compact  group 

is homogeneous, of Maharam type w(G). 

Here arises the natural  question whether the completion regularity of # implies 

the completion regularity of u; the proof of theorem 5.8 in [10] does not hold. 

2. In view of Theorem 2.3, it is easy to obtain results much more general than 

Theorem 3.2 applying to automorphisms between measure algebras. For example, 

two remarkable results, namely 2.22 and 2.23 in Fremlin [7], remain valid in the 

area of compact  groups. 
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